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Abstract. The exact and limiting reduced distribution functions have been derived for any 
subsystem of a microcanonically distributed one-component plasma consisting of N elec- 
trons surrounded by a homogeneous continuous background of positive charge. In the 
derivation the Coulomb interaction potential of all the electrons of the system was taken 
into account and retained in the Hamiltonian of the subsystem. 

1.’ Introduction 

For a closed system, the energy E of which is, by definition, constant, the equilibrium 
N-particle specific distribution function p N ,  called by Gibbs (1 902) the microcanonical 
distribution, can be written in the form (Landau and Lifshitz 1958) 

P N  = Cmf(p ,  x)-El  (1) 
where H(pl,  . . . , pN, xl, . . . , x N ) ,  written for brevity as H ( p ,  x), is the Hamiltonian of 
the system of N particles expressed in general as a sum of three parts: the kinetic energy 
of the particles, the potential of external forces acting on the particles including the ‘wall 
potential’, and the interaction potential of the particles within the system; C is the 
normalisation constant 

1/C = 5 S [H(p ,  x ) - E ]  dpl dxl . . . dpN dxN 

where the integration with respect to dxl . , . dxN is taken over the domain of space s1 
bounded by the walls of the vessel containing the system and having finite volume V. 

The distribution (1) is connected with the s-particle specific reduced distribution 
function ps for any subsystem of s < N particles of the microcanonically distributed 
system through the definition 

pS = Cl S[H(p ,  x)-EI dps+l dxs+l . . . dpN d m .  (2) 

For a non-closed macroscopic system, the energy of which is a random quantity varying 
with time, the N-particle specific distribution function p N  has, in thermal equilibrium, 
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the approximate form, called by Gibbs (1902) the canonical distribution: 

PN = A  exp[-Hi(p, x ) / k T l  (3) 

where T is the temperature of the system, k is Boltzmann’s constant and A is the 
normalisation constant, 

1/A = exp[-H(p, x ) / k T ]  dpl dxl . . . dpN dxN. I 

I 
Again, the s-particle specific reduced distribution function ps for any subsystem of 

s < N particles of the canonically distributed system is defined by 

ps = A  exp[-Hi(p, x ) / k T l  dp,+l dx,+I . . . dpN dxN. (4) 

The microcanonical distribution, written in the form (1) using the Dirac S function, 
represents the mathematical expression for the principle of equal a priori probabilities 
according to which (Gibbs 1902) the specific probability distribution function p N  is 
constant inside the region in r space (6N-dimensional orthogonal Cartesian space) 
between the two neighbouring energy surfaces H = E and H = E + dE. The canonical 
distribution (3) introduced by Gibbs (1902) as a postulate for a non-closed system in 
thermal equilibrium is, in fact, based on the distribution law ( 1 )  for the closed system. 
The many versions presented in various degrees of rigour (Uhlenbeck and Ford 1963, 
Balescu 1975) of the proof of the canonical distribution (3) are essentially based on the 
following assumptions. 

(a) The system is weakly coupled with a very large ‘heat reservoir’, i.e. the total 
Hamiltonian is equal to the sum of the Hamiltonians of the system and the ‘heat 
reservoir’, the interaction energy between them, assumed to be small enough for its 
contribution to the total energy to be negligible. 

(b) The total system is in thermal equilibrium, with distribution function the 
microcanonical distribution. 

(c) The system is much smaller than the ‘heat reservoir’. 
The Hamiltonian of the system in distribution (3) may generally be a non-additive 
function which includes the interaction potential only of the particles of the system. 

The same approach which leads to the canonical distribution (3) for a non-closed 
system can be followed to derive the distribution function for a small subsystem of s 
particles of a closed, large system of N particles, the N - s particles now playing the role 
of the ‘heat reservoir’ for the remaining s particles. If the subsystem is spatially 
separated from its complement and interparticle potentials are short-range potentials, 
then the case is identical with what has been said above for a non-closed system, and 
under the same assumptions (a), (b) and (c) the subsystem is shown to be canonically 
distributed, with a Hamiltonian including the interaction potential only of the particles 
of the subsystem. On the other hand, if the subsystem is not spatially separated from its 
complement and consists of particles identical with the particles of its complement, no 
matter what the range of interparticle potentials is, it is obvious that application of 
assumption (a) above implies further that the Hamiltonian of the system has to be 
additive, i.e. the system has to be considered as ideal. Indeed, it was shown by Khinchin 
(1949) that a subsystem of s particles of a microcanonically distributed system consist- 
ing of an ideal gas of N point particles is canonically distributed if s << N, with 
distribution function ps identical to the distribution function obtained for the same 
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subsystem if the whole system of N particles was considered to be canonically 
distributed. 

Therefore a question arises: if we consider a microcanonically distributed system of 
N particles, what is the distribution function for any subsystem of s N particles not 
spatially separated from the N - s particles, if a non-additive Hamiltonian is to be 
retained for the system, i.e. if the system is to be considered as non-ideal? In this work 
we attempted to answer rigorously the above question for a closed, neutral system 
consisting of charged particles with pure Coulomb interactions. 

2. Reduced distribution functions of a microcanonically distributed plasma 

Let us consider a system consisting of electrically charged particles (a plasma) with 
Coulomb interaction potentials which, although weak, are long-range potentials. In a 
real plasma there must be at least two components present, say, electrons and positive 
ions, so that the total charge of the system is zero. In the following analysis, however, 
we shall consider a simplified model of a plasma: a one-component system, say, an 
electron gas, in the presence of a homogeneous continuous background of positive 
charge which neutralises the overall charge but has no dynamic role and is not retained 
in the Hamiltonian of the system (Balescu 1975). We assume that the system consid- 
ered is confined by hard reflective walls to a domain Q of physical space and is not 
subject to any external forces other than the ‘wall potential’ Uw(xi) acting on the jth 
electron ( j  = 1 ,2 ,  . . . , N )  and assumed to be Uw(xi) = 0 inside the vessel and Uw(xi) = 
CO outside the vessel. Also, the system under consideration is closed, in thermal 
equilibrium and characterised by a constant energy E.  The Hamiltonian of the system 
including the interaction potential energy U of all the electrons is 

x i ~ n l j = 1 , 2 , .  . . , N ,  ( 5 )  N e’ 
- E,  P :  H ( p , x ) =  -+ 1 -- 

j = l  2m j < i = l  l l ~ j - ~ i l l  

where Z&=l e2/11xi -.rill = U, and e and m are the charge and mass, respectively, of 
each electron. 

We introduce now the following dimensionless momentum and position variables p !  
and xj : 

p j  =pj(N/2rnE)’/’, x: =xi (E /Ne2) .  (6 )  

The presence of the number of electrons N in the transformations (6)  ensures that the 
new variables pi and xj  remain finite at the thermodynamic limit: N + 00, E + 00. In 
terme of the dimensionless variables p /  and x/ the Hamiltonian of the system, equation 
(3, is written as 

= 1 ,  x/ E Q‘l j = 1 , 2 ,  . . . , N. 
N pi’ N 1 

H ’ ( p ’ , x ’ ) =  1 -+ 1 
j = 1  N j < i = l  Nllxj-xiII (7 )  

The principle of equal a priori probabilities (Gibbs 1902) applied in the energy shell 
between the two neighbouring energy surfaces N ’ =  1 and H ’ =  1 + d E / E  in the 
transformed space, r’ space, gives for the specific probability distribution function 
pEy = pEy(p’, x’) of the system of N electrons the microcanonical distribution 

pEy = C’S[H’(p ’ ,  x’) - 11 (8) 



218 M Psimopoulos and Christina Angelidou 

which is in turn connected with the s-particle reduced distribution function PI, for any 
subsystem of s < N electrons, through the formula 

p: = C’ I S[H’(p’ ,  x’) - 11 dp:,l dx:+l . . . dpk dxk (9) 

where C ’  is the normalisation constant: 

1 --= 
C’ 

S[H‘(p’ ,  x’) - 11 dp; dx; . . . dph dxk. 

Each differential volume dp; dxl . . . dpkdxk  in I?‘ space can be written as 
dpi dxi . . . dpk dxk = dn d S  where dn is the normal distance between the energy 
surfaces H’(p’ ,  x’) = H’ and H‘(p’ ,  x‘) = H ’ + d H ’ ,  and dS is a differential surface 
element of H’(p’ ,  x’) = H‘. But dn = dH‘/llgrad H‘II and thus: 

From equation (7) we can calculate grad H‘ and hence [[grad H’ll as: 

Using equation (11) we can write for the reduced distribution function (9): 

p:dpidx; . . .  dp:dx:=C‘IS[H’(S‘,q’)-l]’dCidq; . . .d4‘kdqh 

= C ’ [  d H ’ S ( H ’ - l ) I  ’ dS  
H’=+m 

H’=O S ( H ‘ )  /(grad H’ll 
where 

S S 

9 =dp;  d x i . .  . dpidx: I1 S(6I-p;)  S ( q ) - - ~ i )  
j = 1  j = l  

= 1 when dp; and 

= 0 otherwise 

dx; for all j = 1,2 ,  . . . , s 

and S(H’)  is the surface of pi’( e‘, q‘) = H‘. 
Performing the integration with respect to dH’  in equation (13) we further obtain: 

The integration in equation (14) is taken over a differential region 2 of the surface 
H’(c’, q’) = 1, confined between the 6(N - s)-dimensional planes 5: = p : ;  111, = xi; j = 
1 , 2 , .  . . , s and c;=p:+dp:; qi=xi+dx:; j =  1 , 2 , .  . . , s. 

We can now write equation (7) in the form: 

Equation (7a) shows that the surface H ’ ( p ’ ,  x’) = 1 can be considered as a surface of 
revolution whose ‘axis’ of symmetry is the 3(N + s)-dimensional space 
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( p i ,  . . , , p i ,  xi, . , , , xh). For each specific point in this space a 3(N -$)-dimensional 
sphere immersed in the space (p;+l,.  . . ,ph) is obtained: 

N 

j-s+l 
p!'=R; 

with radius lRsl: 

The fact that ])grad H'(I in equation (12), looked upon as a function of p;+l, . . . , p h ,  
depends only on p l t l  + . . . + p $  suggests that we can choose as a surface element dS  of 
H'( p ' ,  x') = 1 the element , 

3 ( N - s ) / 2  

dl  27 3 ( N - s ) - 1  dS  = dl dF, = 2 I, r [3 (N - ~ ) / 2 ] ' ~ ' '  

where the integration in equation (16) was taken over the surface F, of the sphere (7b) ,  
and dl is given according to the first fundamental form of the surface Rs = 
RAP; ,  . . . , pi, xi , .  . . , xh), by 

We can now express Jlgrad H'll given by equation (12) in terms of R, and its derivatives. 
Taking partial derivatives of R, from equation (15) we have: 

and 

Substituting equations (18) and (19) into equation (12) and taking into account 
equation ( 7 6 )  we obtain 

2 N aRs 2 112 
IlgradH'/1=2"[1+ N (5) apj + i = l  (z) ] . 

Substitution now of equations (16) and (20), with dl given by equation (17), into 
equation (14) gives: 

The normalisation constant C' can be calculated from equation (10) or equivalently 
from 
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The integral with respect to dpi . . . dpj  in equation (22) can be calculated using 
multidimensional polar coordinates in the space ( p i ,  . . . , p i ) .  Equation (22) is then 
written as: 

where 

and performing the integration in equation (23)  with respect to dr  dw we obtain for C ‘ :  

Substitution of C’ as given by equation (24) into the distribution (21) gives: 

(25) 

Transforming distribution ( 2 5 )  into the dimensional variables pi and xj  we finally obtain 
for the reduced distribution function ps the result: 

3 ~ 1 2  r ( 3 ~ / 2 )  j l ~ ~ / ~ ( ~ - ~ ) - ~  dx:+l. .  . dxh 
PI  = (&) r [ 3 ( N - ~ ) / 2 ]  5 IR0)3N-2 dxi . . . dxk * 

1 3 s / 2 j  (1 -Hs /E)3 (N-s ) /2 -1  dXs+l.. . dXN 
dxl . , . dXN j (1 - ~ / ~ ) 3 N / 2 - 1  Ps = r [ 3 ( N - s ) / 2 ]  r (3N/2)  (-) 2 7 “  

(26)  
where 

S N e 2  

j = 1  j < i = 1  llxj -xi/\ 
H, = p: /2m + U, U =  -. 

Distribution (26) is the exact s-particle specific reduced distribution function for a 
one-component plasma, valid for every N > 1 and s < N. 

If we assume that N >> 1, and use the relation E = N ( E )  = 3NkT/2, then distribution 
(26) is approximated for every s < N, N >> 1, by: 

r ( 3 ~ / 2 )  ( 1 ) 3 ~ / 2  S 
exp[-(l-s/N) p5/2mkT] 

r [ 3 ( N - s ) / 2 ]  3.rrmNkT j =  1 
Ps = 

j e x p [ - ( l - s / N ) U / k T ] d x , + l . .  . d x ~  
X 

Jexp(-U/kT) dxl . . . dXN 

If we further assume that s << N, then distribution (27) reduces to 

It can easily be seen that the resulting reduced distribution function (28) for a subsystem 
of s << N electrons of a macroscopic, microcanonically distributed one-component 
plasma is identical with the reduced distribution function which would be obtained for 
the same subsystem if the plasma was considered to be canonically distributed. 
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It would be interesting to note that the same way of approach used above to derive 
the reduced distribution functions can be followed to derive the N-particle position 
distribution function D(x1, . . . , XN) = PN dpl . . . dpN of a microcanonically dis- 
tributed one-component plasma. Working in the same transformed space, I" space, but 
writing equation ( 7 )  in the form 

we now have for each specific point of the 3N-dimensional space ( x i , .  . . , xk) a 
3N-dimensional sphere ZKl  pi' = R i  of radius /Rol: 

and if we carry on as previously we obtain for the N-particle position distribution 
function, with N >> 1, the result: 

exp(-U/kT) 
5 exp(-U/kT) d T )  & I . .  . &N * 

D =  

It can easily be seen that the resulting N-particle position distribution function (30) 
derived for a microcanonically distributed plasma is identical with the N-particle 
position distribution function which would have been obtained had the plasma been 
considered as canonically distributed. 

3. Conclusions 

In the present work we considered a microcanonically distributed one-component 
plasma consisting of N > 1 electrons surrounded by a homogeneous continuous back- 
ground of positive charge, and derived the exact reduced distribution function given by 
equation (26) for any subsystem of s < N electrons when the Coulomb interaction 
potential of all the electrons is taken into account and retained in the Hamiltonian of 
the subsystem (and the system). The resulting distribution (26) reduces for N >> 1, s << N 
to distribution (28) which is, in fact, identical to the reduced distribution function that 
would be obtained for the same subsystem if the given plasma was considered to be 
canonically distributed. Also, the N-particle position distribution function is derived 
for the given microcanonically distributed plasma following essentially the same way of 
approach and is given for N >> 1 by equation (30). Distribution (30) is identical with the 
N-particle position distribution function which would have been obtained had the 
plasma been considered as canonically distributed. 
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